

Big Spring Works Hard to Provide Quality Water

Once again we proudly present our annual water quality report. This edition covers all testing completed from January through December 2018. As in the past, we purchase our surface water from Colorado River Municipal Water District Reclamation Plant as a member city who uses water from O.H. Ivie, J.B. Thomas, E.V. Spence, Moss Lake, and Ward County Well Field and are committed to delivering the best quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, and community education while continuing to

Our Community, Conserving Our Water

A Source Water Susceptibility Assessment for your drinking water sources is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies.

For more information about your sources of water, please refer to the Source Water Assessment
Viewer available at the following URL:
https://www.tceq.texas.gov/gis/swaview

Further details about sources and sourcewater assessments are available in Drinking Water Watch at the following URL: http://dww2.tceq.texas.gov/DWW/

HEALTH INFORMATION ABOUT YOUR WATER

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergoine organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Big Spring is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

INFORMATION ABOUT SECONDARY CONTAMINANTS

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

WHY PROVIDE A WATER QUALITY REPORT EACH YEAR?

The United States Congress has directed the Environmental Protection Agency (EPA) to require public water systems to report annually on the quality of the drinking water they serve. The City of Big Spring Water Utility supports the regulation and is providing this report to all households in our service area. This report is about your drinking water sources and quality; regulations that protect your health; programs that protect the high water quality of our supply sources; and the treatment processe that assure our drinking water meets or surpasses all federal and state standards.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturallyoccurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

PUBLIC PARTICIPATION OPPORTUNITIES

We encourage public interest and participation in our community's decisions affecting drinking water. Informed consumers are our best allies in maintaining safe drinking water. Regular City Council meetings occur on the 2nd and 4th Tuesdays each month, beginning at 5:30 in the City Council Chambers at 307 East 4th St. We will also be happy to answer any questions about this report, as well as any you may have concerning your water. Call Shape Bowles at 432-264-2501

Water Quality Results Report 2018

COLIFORM BACTERIA

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample	0 sample was positive	*	0	N	Naturally present in the environment

^{*}Presence of Coliform Bacteria in 5% or more of the monthly samples

LEAD AND COPPER

	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Violation	Likely Source of Contamination
Copper (ppm)	09/30/2016 ¹	1.3	1.3	0.49	0	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Lead (ppm)	09/30/2016 ¹	0	15	4.0	1	N	Corrosion of household plumbing systems; Erosion of natural deposits

¹ Tested every 3 years

REGULATED CONTAMINANTS

Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future.									
Disinfectants and Disinfection By-Products	Disinfectants and Disinfection By-Products Detected Detec								
Haloacetic Acids (HAA5)* (mg/L)	2018	22	14.7 - 26.7	No goal for the total	60	N	By-product of drinking water chlorination		
Total Trihalomethanes (TThm)* (mg/L) 2018 50 27 - 61.3 No goal for the total 80 N By-product of drinking water chlorination									

^{*} The value in the Highest Level or Average Detected column is the highest average of all HAA5 and TTHM sample results collected at a location over a year.

INORGANIC CONTAMINANTS

Disinfectants and Disinfection By- Products	Date Tested	Highest Level Detected	Range ofLevels Detected	MCLG	MCL	Violation	Likely Source of Contamination				
Antimony (mg/L)	2018	0.001	0.001 - 0.001	0.006	0.006	N	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition				
Barium (mg/L)	2018	0.2	0.2 - 0.2	2	2	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits				
Chromium (mg/L)	2018	0.001	0.001 - 0.001	0.1	0.1	N	Discharge from steel and pulp mills; Erosion of natural deposits				
Cyanide (ppb)	2016	145	145 - 145	200	200	N	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories				
Fluoride (mg/L)	2018	0.31	0.31 - 0.31	4	4	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories				
Nitrate [measured as Nitrogen] (mg/L)	2018	0.0653	0.0653 - 0.0653	10	10	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits				
Selenium (mg/L)	2018	0.005	0.005 - 0.005	0.05	0.05	N	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines				

RADIOACTIVE CONTAMINANTS

	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Violation	Likely Source of Contamination
Beta/photon emitters (pCi/L)*	5/29/2013	7.8	7.8 - 7.8	0	50	N	Decay of natural and man-made deposits

^{*} EPA considers 50 pCi/L to be the level of concern for beta particles.

TURBIDITY

	Limit (TT)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0.30 NTU	N	Soil runoff
Lowest monthly % meeting limit	0.3 NTU	100%	N	Soil runoff

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chloramines	2018	1.15	0.93 - 2.43	4	4	mg/L	N	Water additive used to control microbes.

UNIT DESCRIPTIONS:

ppm (Parts per million), ppb (Parts per Billion), pCi/L: Pico Curies per Liter

TT: Treatment Technique – a required process intended to reduce a contaminant level in

AL: Action Level – concentration of a contaminant, which, if exceeded, triggers treatment or other requirements which a water system must follow.

ALG: Action Level Goal – The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

MCL: Maximum Contaminant Level – highest level of contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible.

MCLG: Maximum Contaminant Level Goal – level of a contaminant in drinking water below

which there is no known or expected risk to health. MCLG's allow for a margin of safety.

MRDL: Maximum Residual Disinfectant Level – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

N/A: Not Applicable

NTU: Nephelometric turbidity units

MRDLG: Maximum Residual Disinfectant Level Goal – level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants.

